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Abstract
The local spin-density functional approximation is increasingly being used for
materials applications such as predicting structural and magnetic properties.
The recently aquired ability to model low-lying magnetic excitations like
magnons is used for deriving useful formulae to estimate the Curie (Néel)
temperatures of magnetic compounds. Underlying this is Moriya’s unified
approach, appropriately formulated for density functional use. The theory is
applied to the classical compounds FeNi, CoNi, FeNi3, CoNi3, and RhMn3

to establish a level of confidence, and to the Heusler compounds NiMnSb,
Mn2VAl, Co2FeSi, Mn3Al, and Mn3Ga, which are presently studied with
possible applications in mind for advanced spin electronic devices.

1. Introduction

The magnetism of the metallic compounds to be considered here is due to itinerant electrons.
The theory to treat these with has traditionally been pursued along two different directions,
in fact until recently by two separate communities: one uses model Hamiltonians, most
prominently the Hubbard model [1], in conjunction with powerful many-body techniques [2];
the other uses density functional theory and its local spin-density functional approximation
(LSDA). In contrast to the former, the latter is an ab initio approach which does not require
empirical parameters as input [3]. Although it appears that the two main streams are about
to merge into one (see, for instance, Lichtenstein et al [4]), practical and quick predictions of
magnet properties of metals can only be obtained by an ab initio approach like the LSDA.

Itinerant electrons can cooperate in forming localized magnetic moments in some
compounds and completely delocalized (and weak) moments in others. The Rhodes–
Wohlfarth plot [5] provides an empirical viewpoint for a large range of cases, from very weak
ferromagnets to the local moment limit. The latter is traditionally treated by the venerable
Heisenberg model, which is also useful in the framework of the LSDA. The other limit of weak
ferromagnets has been attacked by using the Ginzburg–Landau model [6, 7], which is a model
that can also be applied to ab initio calculations, as done e.g. for ZrZn2 [8]. Moriya [9] describes
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an attempt to cover the whole range. It will be shown to what extend Moriya’s model can be
used for reliable estimates of the Curie (Néel) temperature for ferromagnets, ferrimagnets and
antiferromagnets by means of ab initio calculations in the LSDA. Such estimates are needed
to complete modern predictions of ‘tailored’ magnetic properties of materials such as that of
Wurmehl et al [10].

Some of the itinerant-electron magnets chosen here as examples (NiMnSb, Mn2VAl,
Co2Fesi, and Mn3Ga) possess both local and less localized moments. They are not part of
the Rhodes–Wohlfarth plot. This classification stems from the Heusler compounds, where the
type of localization was first described [11, 12]. The moments of other selected compounds
like the ferromagnets FeNi, CoNi, CoNi3 and the non-collinear antiferromagnet RhMn3 are
intermediate.

Although density-functional theory [13]—together with well-known approximations like
the LSDA—is a ground-state theory, it is possible to apply the LSDA for modelling the energies
of low-lying excited states. One approach suitable for studying magnetic excitations is based
on spin spiral configurations for the magnetic moments, as was done in earlier work [14] to [17]
as well as [8] (and references given therein). The basis for this approach is summarized briefly
in the next section. This is followed by a derivation and discussion of a simple expression
for the Curie temperature—or the Néel temperature, respectively—of metallic compounds
in the spherical approximation starting from a functional integral gleaned from the work of
Moriya [9]. The formula derived requires the evaluation of exchange as a function of the
wavevector which can be performed by computing total energies. These exchange functions
depend on the type of crystal structure, or put differently, on the number of sublattices, different
structures giving rise to different expressions. These are derived for a number of cases and
are evaluated numerically in the LSDA for FeNi, CoNi, FeNi3, CoNi3, NiMnSb, Mn2VAl,
Co2FeSi, Mn3Al, Mn3Ga, and RhMn3 in the last section, where the results are put into context
and discussed.

2. Theory

2.1. Spin spirals

A spiral magnetic structure is defined by giving the Cartesian coordinates of the magnetization
vector, Mnτ , as

Mnτ = Mτ [cos(q · Rn + ϕτ ) sin θτ , sin(q · Rn + ϕτ ) sin θτ , cos θτ ] . (1)

Here q is the wavevector that characterizes the spiral and Mτ is the magnitude of the magnetic
moment at site Rn + τ , where Rn is a translation and τ a basis vector; ϕτ and θτ are polar
angles.

Since all atoms of the spiral structure separated by a translation Rn are equivalent,
possessing magnetic moments of equal magnitude, periodicity is not lost with respect to lattice
translations. This leads to a useful property for the single-particle spinor functions, which is
embodied in a generalized Bloch theorem:

{q · Rn|ε|Rn}ψk(r) = eik·Rnψk(r), (2)

where the ψk(r) are eigenspinors. The operator {q ·Rn|ε|Rn} combines a lattice translation Rn

and the identity space rotation, denoted by the identity symbol ε, with a spin rotation about the
z-axis by an angle q · Rn . The vectors k lie in the first Brillouin zone, which is defined in the
usual way. The spin spiral defined in (1) does not break the translational symmetry of the lattice.
This statement is independent of the choice of q which, therefore, need not be commensurate
with the lattice. A practical consequence is that no supercell is needed to solve the Schrödinger
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equation in the presence of spin spirals. From a representation of the generalized translation
operator, which is easily obtained from the spin-1/2 rotation matrix as

{q · Rn|ε|Rn}ψ(r) =
(

exp(iq · Rn/2) 0
0 exp(−iq · Rn/2)

)
ψ(r − Rn) (3)

one can see that the spiral wavevector q is chosen from inside the first Brillouin zone; q-
vectors outside give nothing new. The original derivation of the properties of the spin spiral is
due to Herring [18]. This was rediscovered independently and put to use by Sandratskii [19]
and [15]. It should be emphasized that, in order to apply this concept, spin–orbit coupling must
be negligibly small.

If the Kohn–Sham Schrödinger equation that must be solved in the LSDA is written in
the usual form as Hqψ = εψ , then the Hamiltonian, Hq, can be specified in the following
form [15]:

Hq = −1∇2 +
∑
nτ

�(|rnτ |)U+(θτ , ϕτ ,q)
(
veff+ (|rnτ |) 0

0 veff− (|rnτ |)
)

U(θτ , ϕτ ,q) (4)

where |rnτ | = |r − Rn − τ |, �(|rnτ |) is the unit step function that vanishes outside the atomic
sphere centred at |Rn + τ |, the indices + and − label the spin-up and spin-down effective
Kohn–Sham potential, and U(θ, ϕ,q)

.= U(θ,q · R + ϕ) is the spin-1/2 rotation matrix.
An important observation is that the Hamiltonian above depends on a parameter q, the

wavevector characterizing the spin spiral. Niu and Kleinman [20] showed that, just like the
adiabatic approximation for decoupling the electronic from the ionic motion in solids, this
parameter will lead to a Berry phase. In fact they demonstrated [20, 21] that the Berry curvature
involved in the equation of motion describes how the total spin component along the symmetry
axis changes due to spin deviations from the ground-state configuration. So if the total energy
is calculated by constraining the magnetic moment to the ground-state value M for a small
value of θ , then the spin wave energy for an itinerant electron ferromagnet is (in atomic units)
given by

ω(q) = lim
θ→0

4

M

E(q, θ)

sin2 θ
, (5)

where the total energy E(q, θ) is counted from the ground-state value. Since the total energy
is nearly proportional to sin2 θ , the choice of θ is not very critical. This formula not only
establishes the spiral energy as a physical quantity but has also been shown to lead to very good
agreement with measured magnon energies for Fe, Co and Ni [16]. Thus one can assume with
a great deal of confidence that the adiabatic approximation is valid for these spin systems. The
spiral energy, furthermore, is the central quantity for estimating the Curie or Néel temperature
of metallic compounds, as will be shown next.

2.2. Thermodynamics: the spherical approximation

A useful theory that, in principle, applies to the entire range of cases from very weak
ferromagnets to the local moment limit was proposed by Moriya and Takahashi [22] (Moriya,
chapters 7–8, [9]) who used the Stratonovich–Hubbard functional integral method. One can
construct a simple form for the functional that does not contain the original model parameters.
Instead one can formulate the appropriate functional in terms of on-site and off-site total
energies obtainable in the LSDA. In a notation somewhat different from that of Moriya and
Takahashi, the formalism is quite general and may be described as follows.

A functional 
 = 
(Mτ ,Lτ ,Mnq) is constructed that depends on the magnetization
of atom τ , Mτ , the size of the local moment of atom τ , Lτ , and the fluctuation vector
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Mnq = (mxnq,m ynq,mznq) of the ‘normal mode’ labelled n. The functional integral to be
evaluated is then

exp (−F/kBT ) ∝
∏
τ

∫
dL2

τ

∫ ∏
nq

dMnq exp[−
(Mτ ,Lτ ,Mnq)/kBT ] (6)

which supplies the free energy, F . The normal modes are given by the eigenvectors {Cnτ }
to be obtained by diagonalizing an exchange matrix that will be discussed subsequently. In
writing down an expression for the functional
 , one uses an important approximation in which
Lagrange multipliers, λατ , for each cartesian component, (α = x, y, z), constrain the size of the
magnetic moments to be near a most probable size. This is called the spherical approximation.
Thus one writes


 =
∑
ττ ′

∑
qn

jττ ′(q)C∗
nτCnτ ′ |Mnq|2 +

∑
τ

Eτ (Mτ ,L2
τ )

−
∑
ατ

λατ

(
L2
ατ + δαz M2

τ −
∑
nq

|Cnτ |2|mαnq|2
)
. (7)

Here jττ ′(q) is the exchange energy as a function of the wavevector q that accounts for the
off-site interactions, whereas Eτ (Mτ ,L2

τ ) is the on-site energy of a given configuration of local
moments and magnetization.

The integral over Mnq can now be carried out, however the q = 0 component Mτq=0 =
(0, 0,mτ z0) = (0, 0,Mτ ) is singled out and identified as the macroscopic magnetization of
atom τ . The result is

exp (−F/kBT ) ∝
∫

dL2
τ

∫
dMτ

× exp

{
−

∑
τ [Eτ (Mτ ,L2

τ )− ∑
α λατL2

ατ ]
kBT

− 1

2

∑
αnq

ln
λαn + jn(q)
πkBT

}
. (8)

Here the diagonalized exchange function is defined by

jn(q) =
∑
ττ ′

jττ ′(q)C∗
nτCnτ ′ . (9)

Furthermore

λαn =
∑
τ

λατ |Cnτ |2 (10)

and

M2
τ =

∑
nα

|Cnτ |2|mαnq=0|2. (11)

Next, equation (8) is differentiated with respect to λατ and the result is equated to
zero in order to determine the condition for the constraint that is implied by the spherical
approximation. With L2

τ = ∑3
α=1 L2

ατ and
∑

τ |Cnτ |2 = 1, one obtains for the local moment
∑
τ

L2
τ = kBT

N

∑
α

∑
qn

χαn(q), (12)

where

χαn(q) = 1/[2λαn + 2 jn(q)]. (13)

It is emphasized that, for simplicity in writing, thermally averaged quantities and the original
variables are not distinguished in the notation used here. Next, a saddle-point approximation is
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employed to evaluate the integral over Lτ . The saddle-point condition is obtained by taking the
derivative with respect to L2

ατ . This gives

λατ = ∂Eτ (Mτ ,L2
τ )

∂L2
ατ

+ kBT

N

∑
qn

χαn(q)
∂ jn(q)
∂L2

ατ

. (14)

The quantity χαn(q) in (12) is identified as the susceptibility using the fluctuation-dissipation
theorem in the static approximation.

Attention is now limited to temperatures above the ordering temperature where Mτ = 0
for all basis atoms τ . Then, because of isotropy, equation (12) becomes

∑
τ

L2
τ = 3kBT

N

∑
qn

χn(q), (15)

where, from (13), the susceptibility is

χn(q) = 1/[2λn + 2 jn(q)]. (16)

Using λn = ∑
τ λτ |Cnτ |2, the quantity λn is to be determined with

λτ = 3
∂Eτ (0,L2

τ )

∂L2
τ

+ 3
kBT

N

∑
qn

χn(q)
∂ jn(q)
∂L2

τ

. (17)

At the Curie (Néel) temperature, the first term on the right-hand side vanishes. Then, ignoring
the second term, one sees that λn = 0 for all n. Thus the Curie temperature in the spherical
approximation is obtained as

kBT SP
c = 2

3

∑
τ

L2
τ

[
1

N

∑
qn

1

jn(q)

]−1

. (18)

At this stage, however, the size of the local moment, Lτ , is not known unless one succeeds in
solving equations (15) to (17) self-consistently. A number of comments are in order.

For the case of a primitive lattice, one might assume L2 = S(S + 1); equation (18) with
this choice is then known as the RPA formula, which can be derived quantum mechanically
for a spin-S = 1/2 system, for which L2 = S(S + 1) [23–25]. For itinerant-electron systems,
however, a relation in terms of S is not defined. In spite of this, in many applications of the RPA
formula one simply takes L2 = M2

0 , where M0 is the saturation magnetization. For the case of
non-primitive lattices, equation (18) is new as far as the sum on the local moments squared is
concerned.

More insight is obtained if equations (15) to (17) are solved. Assuming that the exchange
functions jn(q) and the on-site energy Eτ (0,L2

τ ) are known, then L2
τ and the uniform

susceptibility χ−1
0n = 2λn can in principle be obtained in terms of the temperature.

For the total energy Eτ (0,L2
τ ), one is tempted to use the fixed spin method (FSM) first

employed by Schwarz and Mohn [26]. This method gives the total energy as a function of
the magnetization, which can then be expanded in powers of the magnetic moment. Once
the expansion coefficients are known, it is easy to include fluctuations. This has been done
before [7, 8, 14, 27], but it is found that the expansion coefficients are too large and must be
renormalized [8, 28]. The reason for the failure of the FSM is that this representation of the
total energy is only accurate near the minimum of the total energy where the moment is almost
fully developed; when the magnetization is small, the disordered local moment state [3] is more
appropriate, but not easy to treat with the FSM.

If the expansion obtained by the FSM is renormalized and the total energy is written
as a Landau expansion, the Curie temperature thus obtained is smaller than the spherical
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Figure 1. Calculated inverse susceptibility of iron. The dashed curve is the inverse susceptibility in
the spherical approximation with constant L2; the solid curve is obtained by solving (15) to (17) self-
consistently for the case of a primitive lattice. Dots are the experimental data from Shimizu [29].

approximation by a factor of 3/5. This is often called the spin-fluctuation approximation,
which is thought to be a good starting point for weak ferromagnets.

To demonstrate that, for the case of a nearly localized ferromagnet, the formalism can
approximately be exploited to calculate the local moment together with the Curie–Weiss law
for the susceptibility, one may assume that, for this case, an expansion of the energy function
E(0,L2) about the value of L2/M2

0 = 1 is meaningful. The derivative of the exchange function
with respect to L2 in (17) can then be estimated from ∂ j (q)/∂M2

0 , i.e. replacing L by M0. The
latter derivative has been obtained numerically by finite differences using constrained total
energy calculations to values of the magnetic moment, M0 ±�M , for bcc-Fe.

Employing the expansion—which should not be confused with the FSM—

E(0,L2) = 1
4χ

−1
eff · (L2/M2

0 − 1), (19)

the result shown in figure 1 for the inverse susceptibility for bcc-Fe is obtained. The value used
here for the expansion coefficient is χeff � 0.67 × 10−4 emu mol−1. The Curie temperature
is obtained as Tc = 1018 K, which is to be compared with the experimental value of 1044 K.
The magnetic moment at the calculated Curie temperature is calculated to be L � 1.07M0.
It should be stressed that the only input parameter is χeff which, together with the ab initio
exchange function j (q), explains both the slope and the Curie temperature. It is interesting to
observe that χeff is of the order of magnitude of a Brillouin-zone average of the non-uniform
susceptibility χ(q) [15]. The agreement with the experimental data is perhaps fortuitous.

This section is closed with a remark about the mean-field approximation (MFA) for
the multi-sublattice case which is of interest here. A classical review article is that by
Anderson [30] and, of the many modern applications of the MFA which use the LSDA, only
the recent paper by Sasioglu et al [17] is mentioned here for brevity.

The MFA for the multi-sublattice case is obtained by including the T = 0 magnetic
moments in the definition of the exchange constants, i.e. Jττ ′(q) .= Mτ jττ ′(q)Mτ ′ . The
summed exchange (1/N)

∑
q Jττ ′(q) represents the mean field at site τ due to site τ ′ and

is then diagonalized, the largest eigenvalue, Jmax, determining the Curie temperature in the
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MFA [30]:

kBT MF
c = (2/3)Jmax. (20)

2.3. Exchange in detail

To calculate the exchange functions, jττ ′(q), one starts with the off-site total energy, EOS(q),
which is written by means of spin spirals in the following way:

EOS(q) =
∑
ττ ′

Mτ Mτ ′ [ jττ ′(q) sin θτ sin θτ ′ cos(ϕτ − ϕτ ′)+ jττ ′(0) cos θτ cos θτ ′ ], (21)

where Mτ , θτ and ϕτ are the polar coordinates for the magnetic moment vector of atom τ .
The total energy is now computed using the force theorem [31, 32], i.e. the band energies are
summed up to the Fermi energy for a given spin configuration using, for these calculations,
the self-consistent ground-state potentials. Throughout, equation (18) is now used with the
substitution L2

τ = M2
τ , where Mτ is the magnetic moment (saturation moment) of atom τ .

The numerical work done in this paper was carried out with the ASW method [33], where the
atomic sphere approximation is used for the construction of the effective crystal potential and
the von Barth-Hedin [34] approximation for exchange and correlation.

2.3.1. Two magnetic atoms per cell. For the case of two magnetic atoms in the unit cell
(two sublattices), such as FeNi, CoNi, and NiMnSb, one determines the three functions j11(q),
j22(q), and j12(q) by calculating band energies scanning the BZ four times using the usual
special q-points. First one chooses θ1 = θ2 = θ and all azimuthal angles equal to zero, calling
the resulting energy e0(q). Next the azimuthal angle is chosen to be ϕ = q · τ and the result is
denoted by e1(q). A third scan results in the energy e2(q) where the sign of the term cos(q ·τ )
is changed with a choice of a reciprocal lattice vector obeying K · τ = π . Here one uses the
fact that the exchange functions are periodic in reciprocal space. A last scan is carried out with
θ1 = 0 and θ2 = θ denoting the energy by e3(q). The desired exchange functions can now be
determined by subtracting the energy origin

e0(q = 0) = M2
1 j11(0)+ M2

2 j22(0)+ 2M1 M2 j12(0). (22)

The result is then written out in terms of the band-energy differences �ei(q), i = 0, 1, . . . , 3:

j12(q) =
[
�e0(q)− 1

2

2∑
i=1

�ei(q)

]/
2M1 M2 sin2 θ, (23)

j11(q) = j11(0)+
[

1
2

2∑
i=1

�ei (q)−�e3(q)+ 2M1 M2 j11(0)F(θ)

]/
M2

1 sin2 θ, (24)

and

j22(q) = j22(0)+
[

2M1 M2 j12(0) sin2 θ

2
+�e3(q)

]/
M2

2 sin2 θ, (25)

where

F(θ) = sin2 θ − 2 sin2 θ

2
. (26)

The exchange eigenvalues are given by the roots of a quadratic equation, i.e.

jn=1,2 = ( j11 + j22)/2 ±
√

j 2
12 + [( j11 − j22)/2]2, (27)
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Figure 2. Three approximations for the Curie temperature of CoNi as a function of the interpolation
variable x . The curve labelled SF is obtained with the spin-fluctuation choice for the local moments,
the curve labelled SP is the spherical approximation, obtained with the local moments equal to the
saturation moments at T = 0, and the upper curve, MF, gives the mean-field approximation. The
inset shows the lowest eigenvalue at q = 0 as a function of x and the vertical line marks the value
of x for which the lowest eigenvalue vanishes at q = 0.

(This figure is in colour only in the electronic version)

where, for simplicity in writing, the dependence on q is implied. The equations (24) and (25)
contain the as-yet undetermined coefficients j11(0) and j22(0). Their sum is fixed by

M2
1 j11(0)+ M2

2 j22(0) = 1
2

2∑
i=1

ei(0). (28)

Thus one can determine the separate values by interpolating, requiring that the lowest
eigenvalue at q vanishes. The inset of figure 2 gives the lowest eigenvalue at q = 0 as a
function of the interpolation variable x . The result of this procedure is seen to be unique and
the spherical approximation for the Curie temperature is obtained as Tc = 1149 K, which
should be compared with the experimental value of Tc = 1140 K.

2.3.2. Three magnetic atoms, two being equivalent. An example for this case is the Heusler
compound FeSiCo2, where the equivalent moments are those of Co. For this case, one must
determine the four exchange functions j11(q), j22(q), j12(q), and j23(q) and needs eight scans
of the BZ. The discussion is simplified by making a special choice for the angles θ given in
table 1, where the reciprocal lattice vectors are also listed to eliminate the cosine term.

The single magnetic moment is denoted with the label 1, and the two equivalent moments
with the label 2. Subtracting as before the energy origin

e0(q = 0) = M2
1 j11(0)+ 2M2

2 j22(0)+ 4M1 M2 j12(0)+ 2M2
2 j23(0), (29)

one obtains the four exchange functions in terms of the band-energy difference �ei(q), i =
0, 1, . . . , 7:

j11(q) = j11(0)+
[

1
4

4∑
i=1

�ei (q)− 1
2

6∑
i=5

�ei (q)

]/
M2

1 , (30)
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Table 1. Choice of angles and reciprocal-space vectors q′ for evaluating (21) for the case of three
magnetic atoms in the unit cell with two being equivalent. The quantities Ki are reciprocal lattice
vectors (K1 ·τ 12 = K1 ·τ 13 = π and K2 ·τ 23 = K3 ·τ 23 = π ). The notation for the band energies
is given in the last column.

{q′} θ1 θ2 θ3 ϕ1 − ϕ2 ϕ1 − ϕ3 ϕ2 − ϕ3 Energy

q π/2 π/2 π/2 0 0 0 e0(q)
q π/2 π/2 π/2 q′ · τ 12 q′ · τ 13 q′ · τ 23 e1(q)
q + K1 π/2 π/2 π/2 q′ · τ 12 q′ · τ 13 q′ · τ 23 e2(q)
q + K2 π/2 π/2 π/2 q′ · τ 12 q′ · τ 13 q′ · τ 23 e3(q)
q + K3 π/2 π/2 π/2 q′ · τ 12 q′ · τ 13 q′ · τ 23 e4(q)
q 0 π/2 π/2 q′ · τ 12 q′ · τ 13 q′ · τ 23 e5(q)
q + K3 0 π/2 π/2 q′ · τ 12 q′ · τ 13 q′ · τ 23 e6(q)
q 0 π/2 π/2 0 0 0 e7(q)

j22(q) = j22(0)+
[

1
2

6∑
i=5

�ei (q)+ 4M1 M2 j12(0)+ 2M2 j23(0)

]/
2M2

2 , (31)

j12(q) =
[
�e0(q)+ 1

2

6∑
i=5

�ei(q)−�e7(q)− 1
4

4∑
i=1

�ei(q)

]/
4M1 M2, (32)

and

j23(q) =
[
�e7(q)− 1

2

6∑
i=5

�ei (q)

]/
2M2

2 . (33)

The exchange eigenvalues are given by jn=1 = j22 − j23 and

jn=2,3 = ( j11 + j22 + j23)/2 ±
√

2 j 2
12 + [( j11 − j22 − j23)/2]2, (34)

where, for simplicity in writing, the q-dependence of the exchange functions is implied.
As before, one sees that (30) and (31) contain the as-yet undetermined coefficients j11(0)

and j22(0). Since their sum is fixed by

M2
1 j11(0)+ 2M2

2 j22(0) = 1
4

4∑
i=1

ei (0), (35)

one may use the interpolation scheme as before, obtaining again a unique value for the Curie
temperature.

2.3.3. Four magnetic atoms, three being equivalent. An example for this case is the Cu3Au
structure, such as, for instance, Ni3Fe, where the equivalent moments are those of Ni. The
single magnetic moment is denoted with the label 1. There are now ten BZ scans needed.
For the choice of angles and the notation, one may expand table 1 in an obvious way by two
columns and two lines, the latter being added before line seven with reciprocal lattice vectors
K1 and K2 with polar angle θ1 = 0. For the Cu3Au structure, K1, K2, and K3 are the basis
vectors of the simple cubic reciprocal lattice. The derivation of the expressions for the exchange
functions in terms of band-energy differences follows the same scheme as in the previous cases,
with the following result:

j11(q) = j11(0)+
[

1
4

4∑
i=1

�ei (q)− 1
4

8∑
i=5

�ei (q)

]/
M2

1 , (36)
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Table 2. Collection of pertinent experimental and calculated data for 11 selected magnetic
compounds.

Compound Lattice a (Å) c/a M1 (μB) M2 (μB) T SP
c (K) T MF

c (K) T exp
c (K)

FeNia CuAu 2.481
√

2 2.551 0.600 972 1130 790

CoNia CuAu 2.459
√

2 1.643 0.673 1149 1538 1140
FeNi3a AuCu3 3.489 2.822 0.588 986 1290 870
CoNi3a AuCu3 3.473 1.640 0.629 733 925 920
NiMnSbb C1b 5.920 3.697 0.303 968c 1281 730
Mn2VAld L21 5.875 −0.769 1.374 580 663 760
Co2FeSie L21 5.640 2.698 1.149 1058 1267 1100
Mn3Alf L21 5.804 −2.258 1.128 196 342
Mn3Gaf L21 5.823 −2.744 1.363 314 482
Mn3Gaf DO22 3.772 1.898 −2.829 2.273 762 1176
RhMn3

g AuCu3 3.800 3.066 1059 855

a Lattice constants and experimental Curie temperatures from [35].
b Lattice constants and experimental Curie temperatures from [36].
c T SP

c = 1091 K if moment of Ni is neglected.
d Lattice constants and experimental Curie temperatures from [38].
e Lattice constant calculated and experimental Curie temperature from [39, 40].
f Lattice constants calculated by [10] and [41].
g Lattice, magnetic structure and Néel temperature from [42].

j22(q) = j22(0)+
[

1
4

8∑
i=5

�ei (q)+ 6M1 M2 j12(0)+ 6M2 j23(0)

]/
3M2

2 , (37)

j12(q) =
[
�e0(q)+ 1

4

8∑
i=5

�ei(q)−�e9(q)− 1
4

4∑
i=1

�ei(q)

]/
4M1 M2, (38)

and

j23(q) =
[
�e9(q)− 1

4

8∑
i=5

�ei (q)

]/
6M2

2 . (39)

Finally, the exchange eigenvalues are given by twice jn=1,2 = j22 − j23 and

jn=3,4 = ( j11 + j22 + 2 j23)/2 ±
√

3 j 2
12 + [( j11 − j22 − 2 j23)/2]2, (40)

where, for simplicity in writing, the q-dependence of the exchange functions is implied. The
open exchange constants are determined as before.

3. Results and discussion

The reason for the choice of the magnetic compounds listed in table 2 is first the need to
establish a certain level of confidence for the numerical procedure employed here. Thus FeNi
and CoNi serve as examples for the two-sublattice case given in section 2.3.1. The much-
studied Heusler compound NiMnSb can also be treated as a two-sublattice case if one is
interested in the role of the small Ni-moment [17]. The classical systems FeNi3 and CoNi3

are examples for section 2.3.3, whereas the compounds Mn2VAl, Co2FeSi, and Mn3Ga require
the use of the formulae given in section 2.3.2.

The Curie temperature of FeNi is overestimated; recalling that the spin-fluctuation
approximation (SFA) (section 2.2) gives T SF

c = 3/5 · T SP
c = 583 K, the experimental value is

bordered by T SF
c and T SP

c . This is also so for FeNi3, whereas CoNi is well described by the
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spherical approximation (SPA). The Curie temperature of CoNi3 is underestimated by both the
SFA and the SPA, the experimental value being near the mean-field approximation (MFA).

The system NiMnSb is the much-studied half-metallic C1b-Heusler compound [36]. A
previous estimate of the Curie temperature in [37] started out with the SFA, to which a
contribution from the dynamic susceptibility was added to obtain agreement with the measured
value. The later estimate by Sasioglu et al [17] is, with 900 K, close to the value in the SPA.
Ignoring the magnetic moment of Ni, a rather high value for T SP

c is obtained, which does not
agree with [17]. All in all, the experimental value is again bordered by the SFA (580 K) and
the SPA.

The system Mn2VAl is a half-metallic ferrimagnet for which Weht and Picket [38]
calculated the electronic structure. The calculations underlying the present estimate of the Curie
temperature were obtained in the LSDA, i.e. no generalized gradient correction (GGA) was
applied as in [38], which resulted in a smaller energy gap here and probably is the reason why
the MFA underestimates the experimental Curie temperature. Generally, the MFA supplies an
upper bound. The net magnetic moment obtained in the LSDA here is 1.98 μB, to be compared
with the 2 μB by [38]. The results give support to the statement of Weht and Picket [38] that
the GGA makes a qualitative difference in the predicted behaviour of Mn2VAl.

The ferromagnetic Heusler compound Co2FeSi according to Wurmehl et al [39] and
Fecher et al [40] possesses a very large total magnetic moment of 6 μB per formula unit and
is half-metallic. The LSDA does not succeed in giving this state, instead it places the Fermi
energy above the gap and gives a magnetic moment of about 5 μB per formula unit. Apparently,
the effects of correlation are so important here that the LSDA&U needs to be employed [40].
It is still somewhat surprising that the SPA for the Curie temperature, with 1057 K, is so close
to the measured value 1100 K.

The next three compounds in table 2 motivated the present investigation. These are Heusler
compounds like the prototypical Pd2MnSn, where Mn occupies two different lattice sites: MnI
on the Mn-site and MnII on the Pd-sites. They were predicted to be ferrimagnetic and half-
metallic, with a nearly zero net moment [10]. The ASW-LSDA calculations performed here for
Mn3Al and Mn3Ga do give spin polarizations of 96% and 98% at the Fermi energy, respectively,
in good agreement with the full-potential calculations of Wurmehl et al [10], whose calculated
density of states is also in very good agreement with the results shown in figure 3. The estimated
Curie temperature for Mn3Al is likely to be below room temperature, whereas that for Mn3Ga
in the L21 structure is definitely higher. Recent measurements show, however, that Mn3Ga
prefers the tetragonal DO22-structure [41], for which indeed the ASW-LSDA calculations
show a relative stability by 0.1 eV per formula unit if the lattice constants supplied by Felser
and Fecher [41] are used in the calculations. In the DO22-structure, the spin polarization is
still of the order of 66% (see figure 3) and the estimated Curie temperature is quite high, with
T SP

c = 762 K. This value is correlated with a large increase in the magnetic moment of MnII,
labelled M2 in table 2. When, however, the relative stability of Mn3Al is checked by total-
energy calculations, it is found to be more stable in L21 by 0.13 eV per formula unit compared
with the DO22-structure. Another structure possible by stoichiometry is AuCu3, which may be
constructed to be a non-collinear antiferromagnet. It is found to have a Mn-moment of 2.2 μB

and is unstable by about 0.3 eV per formula unit with respect to the L21 structure. It should
be emphasized, however, that no lattice optimization was carried out. Since Mn3Al thus most
likely crystalizes in the L21 structure, the estimated Curie temperature of about 200 K should
be validated experimentally.

The final entry in table 2 concerns RhMn3. This is a non-collinear antiferromagnet which
has the AuCu3 structure. The electronic and magnetic properties were described some time
ago [42], where the geometry of the non-collinear moment arrangement is also depicted and
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Figure 3. Spin-resolved density of states (DOS) of cubic Mn3Ga in the L21 structure, tetragonal
Mn3Ga in the DO22 structure, and cubic Mn3Al in the L21 structure. The curves bordering the
shaded areas are the density of states of the d-electrons of MnI, for which the magnetic moments
are given in table 2 as M1.

references to experimental work are given. The three Mn atoms are equivalent, which requires
the evaluation of two exchange functions j11(q) and j12(q) from equation (21), obtaining the
angles from figure 5(a) of [42]. The Néel temperature is then calculated in the spherical
approximation with equation (18) where the eigenvalues are twice j11(q) − j12(q) and once
j11(q)+2 j12(q). The SPA is seen to overestimate the experimental Néel temperature of 855 K,
which is thus bracketed by the SFA (635 K) and the SPA.

Summary

The central result is equation (18). Although, as it stands, it contains the local moments squared,
L2
τ , as unknown quantities, it still allows us to make useful approximations for the Curie or

Néel temperature of metallic magnets. It is shown for iron how the unknown value of L2 might
be approximated, but in all further applications treated here the values of the local moments
are taken as the atomic magnetic moments in the ground state. As stressed by Moriya [9],
equation (18) covers the range of weak ferromagnets up to the local moment limit. Thus, out of
eight metallic magnets studied here, one finds six where the measured Curie (Néel) temperature
is in between the spin-fluctuation limit and the spherical approximation limit, in most cases the
latter being closer to experiment. Therefore, the predictions by the spherical approximation for
the cases where the Curie temperatures are not known are expected to be quite reliable.
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[37] Kübler J 2003 Phys. Rev. B 67 220403
[38] Weht R and Picket W E 1999 Phys. Rev. B 60 13006
[39] Wurmehl S, Fecher G H, Kandpal H C, Ksenofontov V, Fecher C, Lin H-J and Morais J 2005 Phys. Rev. B

72 184432
[40] Fecher G H, Kandpal H C, Wurmehl S, Felser C and Schönhense G 2006 Appl. Phys. 99 08J106
[41] Felser C and Fecher G H 2006 private communication
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